Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its B subunit for immunization of mice against gastric Helicobacter pylori infection.
نویسندگان
چکیده
The heat-labile toxin (LT) of Escherichia coli is a potent mucosal adjuvant that has been used to induce protective immunity against Helicobacter felis and Helicobacter pylori infection in mice. We studied whether recombinant LT or its B subunit (LTB) has adjuvant activity in mice when delivered with H. pylori urease antigen via the parenteral route. Mice were immunized subcutaneously or intradermally with urease plus LT, recombinant LTB, or a combination of LT and LTB prior to intragastric challenge with H. pylori. Control mice were immunized orally with urease plus LT, a regimen shown previously to protect against H. pylori gastric infection. Parenteral immunization using either LT or LTB as adjuvant protected mice against H. pylori challenge as effectively as oral immunization and enhanced urease-specific immunoglobulin G (IgG) responses in serum as effectively as aluminum hydroxide adjuvant. LT and LTB had adjuvant activity at subtoxic doses and induced more consistent antibody responses than those observed with oral immunization. A mixture of a low dose of LT and a high dose of LTB stimulated the highest levels of protection and specific IgG in serum. Urease-specific IgG1 and IgG2a antibody subclass responses were stimulated by all immunization regimens tested, but relative levels were dependent on the adjuvant used. Compared to parenteral immunization with urease alone, LT preferentially enhanced IgG1, while LTB or the LT-LTB mixture preferentially enhanced IgG2a. Parenteral immunization using LT or LTB as adjuvant also induced IgA to urease in the saliva of some mice. These results show that LT and LTB stimulate qualitatively different humoral immune responses to urease but are both effective parenteral adjuvants for immunization of mice against H. pylori infection.
منابع مشابه
ESCHERICHIA COLI HEAT-LABILE TOXIN B SUBUNIT: CONSTRUCTION AND EVALUATION OF PLASMIDS PROVIDING CONTROLLED HIGH LEVEL PRODUCTION OF THE PROTEIN
With the plasmid DNA from a clinical isolate of enterotoxigenic Escherichia coli (ETEC) H 10407 as template, PCR-mediated cloning of the sequence encoding the heat-labile toxin B subunit (L T -B) has been carried out. Then this sequence was recloned into the pTrc 99A and pET23a expression vectors to give the pJasmids pTRCLTB and pETLTB, respectively. After induction, the former plasmid provides...
متن کاملRectal and intranasal immunizations with recombinant urease induce distinct local and serum immune responses in mice and protect against Helicobacter pylori infection.
To determine the optimal inductive sites for immunization against Helicobacter pylori infection, the protective efficacy of recombinant urease (rUre) was assessed for mice given the vaccine by either the oral (p.o.), intranasal (i.n.), or rectal route. When mice were immunized with rUre (25 microg p.o. or rectally or 10 microg i.n.) plus heat-labile toxin from Escherichia coli as the mucosal ad...
متن کاملImmunization of Mice with Urease Vaccine Affords Protection against Helicobacter pylori Infection in the Absence of Antibodies and Is Mediated by MHC Class II–restricted Responses
We examined the roles of cell- and antibody-mediated immunity in urease vaccine-induced protection against Helicobacter pylori infection. Normal and knockout mice deficient in major histocompatibility complex (MHC) class I, MHC class II, or B cell responses were mucosally immunized with urease plus Escherichia coli heat-labile enterotoxin (LT), or parenterally immunized with urease plus aluminu...
متن کاملImmunogenicity of a Fusion Protein Comprising Coli Surface Antigen 3 and Labile B Subunit of Enterotoxigenic Escherichia coli
Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a...
متن کاملImmunization with Heat Shock Protein A and γ-Glutamyl Transpeptidase Induces Reduction on the Helicobacter pylori Colonization in Mice
The human gastric pathogen Helicobacter pylori (H. pylori) is a successful colonizer of the stomach. H. pylori infection strongly correlates with the development and progression of chronic gastritis, peptic ulcer disease, and gastric malignances. Vaccination is a promising strategy for preventing H. pylori infection. In this study, we evaluated the candidate antigens heat shock protein A (HspA)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 68 5 شماره
صفحات -
تاریخ انتشار 2000